If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+80t=51
We move all terms to the left:
-16t^2+80t-(51)=0
a = -16; b = 80; c = -51;
Δ = b2-4ac
Δ = 802-4·(-16)·(-51)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-56}{2*-16}=\frac{-136}{-32} =4+1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+56}{2*-16}=\frac{-24}{-32} =3/4 $
| 7p^2+4p=0 | | 9+2x+8x=14 | | 4/9m=36 | | 4+x+1+5x+1=0 | | 14-6c=-10 | | 180=(5x-20)+(2x+14)+18 | | x+59=95 | | 7x-28=3 | | 51/5=11/5-x | | 2.5x-8.2=64.9 | | d=0.7*2.40 | | 3x-2+32=36 | | 6x+17=27-4x | | (2*x+10)^2=4*x-60*x+41 | | (2-3x)(3-2x)=0 | | 5y/3=90 | | 0.5t+6=26 | | x+7=74 | | x+25+x+65=180 | | -24=8d | | 3x+4(-1/2x+8)=36 | | p^+4p+3=0 | | 6y/2+8y/4-2/6=8 | | -25=2-9x | | 350-24x=950 | | x+82=74 | | 350-24x=9507 | | 2x-(-3)=18 | | 4y/6+3/2-9y/4=8 | | 2x+350=950 | | 5b+27=42 | | 950+350=2x |